The Impact of Number Theory and Computer-Aided Mathematics on Solving the Hadamard Matrix Conjecture
نویسنده
چکیده
The Hadamard Conjecture has been studied since the pioneering paper of J. J. Sylvester, “Thoughts on inverse orthogonal matrices, simultaneous sign successions, tessellated pavements in two or more colours, with applications to Newtons rule, ornamental tile work and the theory of numbers, Phil Mag, (1867) 461–475 first appeared. We review the importance of primes on those occasions that the conjecture is confirmed. We survey the results of some computer aided construction algorithms for Hadamard matrices.
منابع مشابه
Design of Logic Network for Generating Sequency Ordered Hadamard Matrix H
A logic network to produce the sequency ordered Hadamard matrix H based on the property of gray code and orthogonal group codes is developed. The network uses a counter to generate Rademacher function such that the output of H will be in sequency. A general purpose shift register with output logic is used to establish a sequence of period P corresponding to a given value of order m of the Hadam...
متن کاملConvergence analysis of the global FOM and GMRES methods for solving matrix equations $AXB=C$ with SPD coefficients
In this paper, we study convergence behavior of the global FOM (Gl-FOM) and global GMRES (Gl-GMRES) methods for solving the matrix equation $AXB=C$ where $A$ and $B$ are symmetric positive definite (SPD). We present some new theoretical results of these methods such as computable exact expressions and upper bounds for the norm of the error and residual. In particular, the obtained upper...
متن کاملWilson wavelets for solving nonlinear stochastic integral equations
A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...
متن کاملA method for solving fully fuzzy linear system with trapezoidal fuzzy numbers
Different methods have been proposed for finding the non-negative solution of fully fuzzy linear system (FFLS) i.e. fuzzy linear system with fuzzy coefficients involving fuzzy variables. To the best of our knowledge, there is no method in the literature for finding the non-negative solution of a FFLS without any restriction on the coefficient matrix. In this paper a new computational method is ...
متن کاملSingular constrained linear systems
In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...
متن کامل